The role of alkyl substituents in deazaadenine-based diarylethene photoswitches

نویسندگان

  • Christopher Sarter
  • Michael Heimes
  • Andres Jäschke
چکیده

Diarylethenes are an important class of reversible photoswitches and often claimed to require two alkyl substituents at the carbon atoms between which the bond is formed or broken in the electrocyclic rearrangement. Here we probe this claim by the synthesis and characterization of four pairs of deazaadenine-based diarylethene photoswitches with either one or two methyl groups at these positions. Depending on the substitution pattern, diarylethenes with one alkyl group can exhibit significant photochromism, but they generally show poor stability towards extended UV irradiation, low thermal stability, and decreased fatigue resistance. The results obtained provide an important direction for the design of new efficient DNA photoswitches for the application in bionanotechnology and synthetic biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of derivatization on electron transmission through dithienylethene-based photoswitches in molecular junctions.

We report a combined Non-Equilibrium Green's Function - Density Functional Theory study of molecular junctions made of photochromic diarylethenes between gold electrodes. The impact of derivatization of the molecule on the transmission spectrum is assessed by introducing: (i) substituents on the diarylethene core; and (ii) linker substituents between the gold surface and the diarylethene. We il...

متن کامل

Improving the fatigue resistance of diarylethene switches.

When applying photochromic switches as functional units in light-responsive materials or devices, an often disregarded yet crucial property is their resistance to fatigue during photoisomerization. In the large family of diarylethene photoswitches, formation of an annulated isomer as a byproduct of the photochromic reaction turns out to prevent the desired high reversibility for many different ...

متن کامل

Effect of Alkyl Substituents on the Hydrogen Bonding and Molecular Structure of Benzophenylhydroxamic Acids Crystal structure of UO2 Complex of p-Isopropylbenzophenylhydroxamic Acid

The effect of alkyl substituents on the C-phenyl and/or the N-Phenyl ring of benzophenylhydroxamic acid on their molecular structure and hydrogen bonding has been investigated. The predominant configuration in CHCl3 is determined by steric and electronic effects. Substituents on the C-phenyl ring favor the cis configuration, while substituents in the N-phenyl ring favor a trans c...

متن کامل

Thermal bleaching reactions of photochromic diarylethenes with thiophene-S,S-dioxide for a light-starting irreversible thermosensor.

Thiophene-S,S-dioxidized diarylethenes introducing bulky substituents at the reactive positions were newly synthesized. The diarylethenes showed reversible photochromism, whereas the photocycloreversion reaction was suppressed by thiophene-oxidation. The diarylethene closed-ring isomers having secondary alkyl groups at the reactive positions were found to undergo thermal bleaching reactions whi...

متن کامل

Photoswitchable Fluorescent Diarylethene Derivatives with Thiophene 1,1-Dioxide Groups: Effect of Alkyl Substituents at the Reactive Carbons

Photoswitching and fluorescent properties of sulfone derivatives of 1,2-bis(2-alkyl-4-methyl-5-phenyl-3-thienyl)perfluorocyclopentene, 1-5, having methyl, ethyl, n-propyl, i-propyl, and i-butyl substituents at the reactive carbons (2- and 2'-positions) of the thiophene 1,1-dioxide rings were studied. Diarylethenes 1-5 underwent isomerization reactions between open-ring and closed-ring forms upo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016